Tuesday, December 28, 2010
Small Town Winter
Sunday, November 28, 2010
The Great Pumpkin Pie
Thursday, November 11, 2010
Out at the Beach
This September, we went back, even though some of us had never been there before. The place was Rockaway Beach, NY, the date September 25th and the mood, optimistic.
Friday, October 1, 2010
less bio, same luminescence
Sunday, September 5, 2010
Summery
Monday, July 26, 2010
Blue Voodoo
Monday, July 12, 2010
Camping at Mongaup Pond
Wednesday, June 30, 2010
Paleontology and the Nucleotide New Wave
As an evolutionary geneticist, the theoretical basis as to why I was at a paleontological field site in Kenya last summer is clear to me—but it’s not necessarily easy-to-explain-to-your-mother obvious. Here, I revisit the ideology that brought genetics and paleontology together and me to Africa:
In the 1930s, a few intrepid geneticists began to incorporate their ideas about the dynamics of living populations into a wider evolutionary framework, that included paleontology. And one paleontologist in particular, George Gaylord Simpson, was instrumental in forwarding the concepts from population geneticists into the minds, but probably not hearts, of paleontologists. What emerged was called “The Modern Evolutionary Synthesis”. It was an extension and refinement of Darwin’s way of understanding the natural world. It gave us a way of using gene frequencies in living populations to explain the formation of species diversity, both spatially and temporally.
One tenet of “The Synthesis” was that there is no inherent difference between the evolution that shapes living populations from generation to generation, and the evolution that has formed wildly different species forms over millions of years of geologic time. This was a big deal. Some scientists thought that population genetics was not enough to explain the vast discontinutites in the fossil record, that instead there was some kind of qualitative difference between these two modes of evolution. Today, we essentially agree that microevolution (or population genetics) begets macroevolution (or speciation). And its quite beautiful to envision forms unfolding this way, where staggering diversity emerges from the humble tick of constant gradual change.
Although we regularly reflect on this elegant theory, it is difficult to actively merge these two data types in a biologically meaningful way. There is a network of insurmountable complexity between one nucleotide being replicated imperfectly and causing a consequential mutation, to understanding a menagerie of fossil forms. Despite this, there are a few examples where these two data types are used in a synthetic way.
One way you might imagine that fossils and DNA dovetail is when DNA is still organically residing in the fossilized specimen. This is how the Neanderthal genome was able to be assembled. And recently, DNA was extracted from a fossil finger bone in Siberia which showed that it was an entirely new species that existed between 48,000 and 30,000 years ago. But there is a turning point, that is dependent on both time and the fossilization environment, where virtually all DNA leaves the building. When fossils are nucleotideless like this, it takes conceptual creativity to save them from careening into deep time, like stone dragons, decoupled from the dynamic flow of neontology.
Humans and chimpanzees shared a common ancestor approximately 6 million years ago. This common ancestor of humans and chimpanzees shared a common ancestor with gorillas approximately 8 million years ago. How do we arrive at these time estimates? We need both fossils and genes. The neutral theory of molecular evolution predicts that certain regions of the genome, which are not functionally constrained, mutate at a constant rate over time. Like a consistent ticking molecular clock through time, change, change, change, change. So, by evaluating how different the gene sequences are between two living species, we can estimate how much time has passed since they last shared a common ancestor. However, to accurately connect the genetic distance with time, we need to know how fast the clock ticks. Enter the fossils. Geneticists use fossils to calibrate the molecular clock. We use a fossil that, based on its suite of morphological characters, represents a putative common ancestor between two living lineages. The fossil is dated. This date is used to calibrate the clock. There are not enough fossils to fit neatly into every divergence point between all living species. So, we use one well dated and morphologically informative fossil to calibrate the clock and then all other nodes in the tree, or points of divergence, are inferred based on the genetic distance between the living species. It sounds crazy, and it is kind of crazy, but this is how its done.
When fossils are analyzed and allocated to taxonomic groups, there has to be a method to quantify difference between two specimens. To do this, something has to be known about how skeletal evolution may progress. For example, if a particular feature is measured on two fossil specimens, which differ, how do we know we are comparing equivalent features? Enter, you guessed it, genetics. But also please welcome, our marvelous friend, the study of development, or ontogeny. The study of evolutionary-development, or Evo-Devo, is another place where genetics and paleontology gracefully meet. There are two ways which evo-devo provides evo-info for paleo-bio. One way is that the genetic and developmental basis of skeletal features can tell us if two features, in two different species, are homologous and should be compared. Additionally, paleontologists interpret fossil morphology and ascribe adaptationist explanations to particular features (e.g. a bone like this was used for that function). Ideally, these explanations are grounded in an understanding of what features develop independently. One cannot necessarily say that fingers were shorter because they were used for x, because feet and hands are governed by a common developmental pathway, and maybe it was the feet that were under direct selection. So, selection for one feature can result in another feature just changing along with it, for no adaptive reason, but because they are developmentally linked.
Which brings me to my big idea, which I wanted to dream up while staring out at Lake Victoria last summer, but it didn’t quite happen that way. Hopefully, I can make a contribution to the field—through the paired study of population genetics and skeletal morphology—which will be truly applicable to paleontology. That is what I want. I want to synthesize my evolutionary cake, and eat it too.
The first scientists who brought about this New Synthesis were not only brilliant, they were tolerant and open to other ways of knowing. This is rare. Once you become a part of any group, you learn that there are subgroups and sub-beliefs within the larger group. The subgroups are rarely philosophically harmonious. It’s silly. In the case of evolutionary biology, its best to gather many independent lines of evidence to begin to answer questions about the past, which, we can all agree, is thrilling and mysterious and over.
Blog Post Outtakes:
Waiter, there is a fossil in my hypothesis.
Get your fossils out of my hypothesis.
say fossilized hypotheses five times, fast.
The thing about the genome is that it does not record the evolutionary losses. When an allele is detrimental to life and reproductive success, it is not maintained in the genomes of the members of a population. Fossils record more than that, they record the evolutionary successes and the losses, the winners and losers all fossilize, its all there, except that its not.
There are some lineages that lived in the past but have no living members today. Death is sad but can you imagine how tragic it was the day the last Parathropus died? or even his or her last lonely conspecificless weeks on earth! We do not think there are any direct members of this lineage still in existence. In an evolutionary sense, some deaths are not really ends, while some, heartbreakingly, are.
Monday, June 7, 2010
And I suddenly turn and see your fabulous blank.
Monday, May 3, 2010
Together in its arms
Monday, April 26, 2010
Friday, April 23, 2010
Monday, April 12, 2010
You Are What They Ate
Friday, April 9, 2010
tomato pin cushions (and strawberries too)
ooooOOOO look at this collection of vintage tomato pin cushions. I love the nuanced variation in a collection of many similar things. via A Collection A Day.
Blogging is Thinking, Online
Tuesday, April 6, 2010
Side Dishes
Friday, April 2, 2010
Wednesday, March 31, 2010
Woman Still Uncertain about Future Man
Tuesday, March 23, 2010
a little birdie told me
Friday, March 19, 2010
of Brilliance and Brilliance.
Monday, March 15, 2010
light love
Monday, March 1, 2010
Maternal Imprinting
Wednesday, February 17, 2010
Friday, February 12, 2010
Daily Dialogue
Wednesday, February 3, 2010
Idle Hands
Tuesday, February 2, 2010
“ ”
Friday, January 29, 2010
“ ”
Monday, January 18, 2010
Undiscoveries
Which delivers me directly into the pulsing vein of my next point: Science is scary. If you are a non-scientist, the intricacies of the scientific world can seem mysterious, intimidating or insurmountable. And if you are a scientist, you know that science really truly requires deep intellectual risks that ignite unparalleled feelings of unease. Other people might describe this as the rush of discovery, I might too. But suffice it to say that science can at once be unbelievably wonderful and atrociously heart-wrenchingly terrible.
Friday, January 15, 2010
Monday, January 11, 2010
Rude Alert
So the other day I was in a wretched mood. I had nothing to give. I was not smiling or holding doors or thinking about volunteering or recycling. I was walking through the cold with my ipod on and a scowl. I felt like an actress doing a historical reenactment of a time gone by, you know, for the sake of tourists who expect rudeness. It was a retro move of mine. I thought Ed Koch or The Beastie Boys might jump out at me and give a public service announcement. But they didnt. And I went on brazenly ignoring homeless people, musicians, puppies and people handing out pamphlets. Because I could.
Thursday, January 7, 2010
X Out
Hello second week of January, we meet, unfortunately, again.
Wednesday, January 6, 2010
A Primate Love Letter
Many students in anthropology 101 are writing a science paper for the first time at the college level. And for these students one almost universal error in their writing is that they put too much opinion and emotion into it. They get excited about the material (which is great and encouraged) but they flourish and wax inappropriately, rather than address it in the dispassionate, neutral manner that it requires. The class is about primates, which makes it accessible and easy to relate to, but also contributes to this problem. I doubt this happens at the same frequency in a course about drosophilia (fruit flies). I find too much talk of cute, emotional primates or superior species, where one is inherently better than another in some way.
Addressing this issue without extinguishing any enthusiasm requires careful consideration and I am still searching for ways to do it properly. Another problem that fuels this issue is that they arent reading the literature. So, they have nothing to say except what comes from their own warm primate heart. I need to address the issue of not reading the literature, not referencing it and just wandering through a cascade of baseless, biased claims. Its dangerous even.
I need to spend more time talking about the papers and what I expect. I fantasize about showing them a sentence that is all opiniony and cute and transforming the same general idea into more scientific terms. I also tell them, the shorter the sentences, the better. I often find long winded sentences with words like thus in them. Its an effort to sound smart. I know it. I appreciate the sentiment, I really do, and I have been there, but I need to channel their excitement into the correct format. And maybe I should spend an hour or two where we talk about how damn cute and lovely all the species are, and use all the elaborate and embellished and emotional adjectives we can find. You know, to get it out of our system, to show our appreciation without having to sound scientific about anything. Because truly, if I wasnt moved by primates, in all their fuzzy familiarity, I wouldnt be teaching this lab.